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Abstract: Quinolones are synthetic broad-spectrum antibiotics with good oral absorption 

and excellent bioavailability. Due to the chemical functions found on their nucleus (a 

carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or 

another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) 

quinolones bind metal ions forming complexes in which they can act as bidentate, as 

unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, 

multiple modes of coordination are simultaneously possible. In strongly acidic conditions, 

quinolone molecules possessing a basic side nucleus are protonated and appear as cations 

in the ionic complexes. Interaction with metal ions has some important consequences for 

the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in 

the mechanism of action of these bactericidal agents. Many metal complexes with equal or 

enhanced antimicrobial activity compared to the parent quinolones were obtained. New 

strategies in the design of metal complexes of quinolones have led to compounds with 

anticancer activity. Analytical applications of complexation with metal ions were oriented 

toward two main directions: determination of quinolones based on complexation with metal 

ions or, reversely, determination of metal ions based on complexation with quinolones.  
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1. Introduction 

The generic term “quinolone antibiotics” refers to a group of synthetic antibiotics with bactericidal 

effects, good oral absorption and excellent bioavailability [1,2]. Nalidixic acid (1-ethyl-1,4-dihydro-7-
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methyl-4-oxo-1,8-naphthyridine-3-carboxylic acid, Figure 1), the first compound of the series, was 

introduced in therapy in the 1960s [3]. 

Figure 1. Nalidixic acid. 
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The clinical use of nalidixic acid was limited by its narrow spectrum of activity.  

Several modifications were made on the basis nucleus in order to enlarge the antibacterial spectrum 

and to improve the pharmacokinetics properties, two of these considered as being major: introduction 

of a piperazine moiety or another N-heterocycles in the position 7 and introduction of a fluoride atom 

at the position 6. Thus, the new 4-quinolones, fluoroquinolones, have been discovered starting in the 

1980s. Taking into account the chemical structure of the basis nucleus (Figure 2), the quinolone are 

classified in four groups (Table 1) [4–6].  

Figure 2. The general structure of 4-quinolones. 

N

OO

OH

R3R4

X2

X1

X3

R1

R2

2

1

3

45

6

7

8

 

Table 1. Classes of quinolones based on chemical structure. 

Quinolone 

group/base 

heterocycle 

X1 X2 X3 R1 R2 R3 R4 Representatives Generation 

Naphthyridine  

(8-aza-4-quinolone) 

CH N C H CH3 C2H5 - Nalidixic acid First 

CH N C F C2H5 - Enoxacin Second 

CH N C F 

 

- Gemifloxacin 

 

Third 

CH N C F 
 

- Tosufloxacin 

 

Third 
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Table 1. Cont. 

Quinolone 

group/base 

heterocycle 

X1 X2 X3 R1 R2 R3 R4 Representatives Generation 

Pyridopyrimidine 

(6,8-diaza-4-

quinolone) 

CH N N - 
 

C2H5 - Pipemidic acid First 

 CH N N - C2H5 - Piromidic acid First 

Cinnoline  

(2-aza-4-quinolone) 

N C C 

 

C2H5 H Cinoxacin First 

Quinoline  

(4-oxo-1,4-

dihydroquinoline,  

4-quinolone) 

CH C C H C2H5 H Rosoxacin First 

CH C C C2H5 H Oxolinic acid First 

CH C C F H Flumequine First 

CH C C F C2H5 H Norfloxacin Second 

CH C C F C2H5 H Pefloxacin Second 

CH C C F H Ciprofloxacin Second 

CH C C F 
N

N

 
H Enrofloxacin Second 

CH C C F C2H5 F Lomefloxacin Second 

CH C C F Ofloxacin Second 

CH C C F Levofloxacin Third 

CH C C F 
N

N
H  

F Sparfloxacin * Third 

CH C C F OCH3 Gatifloxacin Third 

CH C C F 
 

OCH3 Balofloxacin Third 

CH C C F Cl Clinafloxacin Fourth 

CH C C F 
F

 
Cl Sitafloxacin Fourth 

CH C C F 
 

OCH3 Moxifloxacin Fourth 

* possesses a - NH2 group in position 5. 
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Based on their antibacterial spectrum and their pharmacokinetic properties, the quinolones are 

classified in four generations [7–9] (Table 2). 

Table 2. Generations of quinolones based on their antibacterial spectrum and 

pharmacokinetic properties. 

Quinolone generation Characteristic features 

First Active against Gram negative bacteria. 

High protein binding. 

Short half life. 

Low serum and tissue concentrations. 

Uncomplicated urinary tract infection. 

Oral administration. 

Second  Class I (enoxacin, norfloxacin, lomefloxacin) 

Enhanced activity against Gram negative bacteria. 

Protein binding (50%). 

Longer half life than the first generation. 

Moderate serum and tissue concentrations. 

Uncomplicated or complicated urinary tract infections. 

Oral administration. 

Class II (ofloxacin, ciprofloxacin) 

Enhanced activity against Gram negative bacteria. 

Atipical pathogens, Pseudomonas aeruginosa (ciprofloxacin). 

Protein binding (20%–50%). 

Moderate to long half life. 

Higher serum and tissue concentrations compared with class I. 

Complicated urinary infections, gastroenteritis, prostatitis,  

nosocomial infections. 

Oral and iv administration. 

Third Active against Gram negative and Gram positive bacteria. 

Similar pharmacokinetic profile as for second generation (class II). 

Similar indications and mode of administration. Consider for community 

aquired pneumonia in hospitalized patients. 

Fourth Extended activity against Gram positive and Gram negative bacteria. 

Active against anaerobes and atypical bacteria. 

Oral and i.v. administration. 

Consider for treatment of intraabdominal infections. 

Quinolones are bactericidal agents that inhibit the replication and transcription of bacterial DNA, 

causing rapid cell death [10,11]. They inhibit two antibacterial key-enzymes, DNA-gyrase (topoisomerase II) 

and DNA topoisomerase IV. DNA-gyrase is composed of two subunits encoded as GyrA and GyrB, 

and its role is to introduce negative supercoils into DNA, thereby catalyzing the separation of daughter 

chromosomes. DNA topoisomerase IV is composed of four subunits, two ParC and two ParE subunits 

and it is responsible for decatenation of DNA thereby allowing segregation into two daughter  

cells [12,13]. Quinolones interact with the enzyme-DNA complex, forming a drug-enzyme-DNA 

complex that blocks progression and the replication process [14,15]. 
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Older quinolones have greater activity against DNA-gyrase than against topoisomerase IV in Gram 

negative bacteria and greater activity against topoisomerase IV than against DNA-gyrase in Gram 

positive bacteria. Newer quinolones equally inhibit both enzymes [16–18]. 

2. Chemical Properties of Quinolones Related to Complexation Process  

Most quinolone molecules are zwitterionic, based on the presence of a carboxylic acid function at 

the 3-position and a basic piperazinyl ring (or another N-heterocycle) at the 7-position. Both functions 

are weak and give a good solubility for the quinolones in acidic or basic media. 

Protonation equilibria of quinolones have been studied in aqueous solution using potentiometry, 1H- 

NMR spectrometry and UV spectrophotometry [19,20]. For a quinolone molecule with the general 

structure depicted in Figure 3, two proton-binding sites can be identified. In solution, such a molecule 

exists in four microscopic protonation forms, two of the microspecies being protonation isomers. 

Figure 3. Protonation scheme of a fluoroquinolone molecule with piperazine ring at the  

7-position (adapted from [20–22]). 
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The microspeciation of drug molecules is used to depict the acid-base properties at the molecular 

level (macroconstants) and at the submolecular level (microconstants). The macroconstants quantify 

the overall basicity of the molecules. The values for pKa1, correlated with the acid function of carboxyl 

group, fall in the range 5.33–6.53, while the values for pKa2, correlated with the basic function of the 

piperazinic group, fall in the range 7.57–9.33. Table 3 contains the protonation constant values for 

norfloxacin and ofloxacin, two representative quinolones. 

Table 3. Protonation constant values for norfloxacin and ofloxacin. 

Compound log β1 log β2 = log Ka2 log β1-log β2 = log Ka1 Isoelectric point Reference

Norfloxacin 14.68 8.38 6.30 7.34 [19] 

14.73 8.51 6.22 7.37 [23] 

Ofloxacin 14.27 8.22 6.05 7.14 [19] 

13.94 8.25 5.69 6.97 [23] 

The microconstants describe the proton binding affinity of the individual functional groups and are 

used in calculating the concentrations of different protonation isomers depending on the pH.  

The quinolones exist mainly in the zwitterionic form between pH 3 and 11. The positively  

charged form QH2
+ is present in 99.9% at pH 1. At pH 7.4 all microspecies are present in 

commensurable concentrations.  

Quinolone microspeciation has been correlated with bioavailability of quinolone molecules, serum 

protein binding and antibacterial activity [20]. The microspeciation is also important in the synthesis of 

metal complexes, the quinolone molecules acting as ligand in the deprotonated form (Q−) in basic 

conditions, and in the zwitterionic form (QH±) in neutral, slightly acidic or slightly basic medium. In 

strongly acidic medium, quinolones form ionic complexes in their cation form (QH2
+).  

Quinolones form metal complexes due to their capacity to bind metal ions. In their metal 

complexes, the quinolones can act as bidentate ligand, as unidentate ligand and as bridging ligand. 

Frequently, the quinolones are coordinated in a bidentate manner, through one of the oxygen atoms of 

deprotonated carboxylic group and the ring carbonyl oxygen atom [Figure 4(a)]. Rarely, quinolones 

can act as bidentate ligand coordinated via two carboxyl oxygen atoms [Figure 4(b)] or through both 

piperazinic nitrogen atoms [Figure 4(c)]. Quinolones can also form complexes as unidentate ligand 

coordinated to the metal ion through by terminal piperazinyl nitrogen [Figure 4(d)]. In the polymeric 

complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly 

acidic conditions quinolones are protonated and appear as cations in the ionic complexes. 

Figure 4. Main coordination modes of quinolones. 
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Figure 4. Cont. 
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3. Metal Complexes of Quinolones 

3.1. Metal-Quinolone Chelates 

The quinolone molecules possess two main sites of metal chelate formation [Figures 4(a,c)]. The 

first of these, represented by the carbonyl and carboxyl groups in neighboring positions, is the most 

common coordination mode in the quinolone chelates. Quinolones can bind divalent cations (Mg2+, 

Ca2+, Cu2+, Zn2+, Fe2+, Co2+ etc.), forming chelates with 1:1 or 1:2 (metal:ligand) stoichiometry or 

trivalent cations (A13+, Fe3+), forming chelates with 1:1, 1:2 or 1:3 (metal:ligand stoichiometry). A 

higher stoichiometry (1:4) is found in complexes with Bi3+. In Figure 5 is depicted the general 

structure of the chelates of quinolones with divalent cations with the 1:2 (metal:ligand) molar ratio. In 

a study of the Cu(II)-ciprofloxacin system it was observed that the number of coordinated ligands 

depends on the pH. Thus, in the more acidic region, a 1:1 complex is favoured, whereas a 1:2 complex 

is the main species at higher pH values [24].  

Figure 5. The general structure of 1:2 (metal:ligand) quinolone chelates with  

divalent cations. 
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It was found that quinolones have a similar affinity for the metal ions, forming chelates more stable 

with hard Lewis acids like the trivalent cations (Al3+, Fe3+). Chelates less stable are formed with the 

cations of group 2A (Mg2+, Ca2+, Ba2+). For instance, the formation constant values for ciprofloxacin 

chelates decrease in order: Al3+ > Fe3+ > Cu2+ > Zn2+ > Mn2+ > Mg2+ [25]. For norfloxacin chelates, the 

variation is quite similar: Fe3+ > Al3+ > Cu2+ > Fe2+ > Zn2+ > Mg2+ > Ca2+ [26]. 
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The stability of chelates is greater in solvents with lower dielectric constant [26] and is pH 

dependent; the affinity of lomefloxacin for the Ca2+ and Mg2+ ions decreases in the order: 

anion>zwitterion>>cation [27]. 

Tables 4–6 present a selection of the chelates obtained in solid state with quinolone acting as 

bidentate ligand through the pyridone oxygen and one carboxylate oxygen, and the type of experiments 

carried out for investigating their biological activity. The tables include those chelates in which  

the quinolones are the only bidentate ligands; complexes with other bidentate co-ligands (e.g., 2,  

2'-bipyridine, 1,10-phenantroline), and their biological activity are not discussed here.  

Table 4. Selected chelates of quinolones from first generation.  

Ligand Metal 

ion  

Molar ratio 

M:L 

General formulae  

of the complexes 

Complex tested/ 

investigated for 

Reference 

Pipemidic 

acid 

VO2+ 

Mn2+ 

Fe3+  

Co2+  

Ni2+  

Zn2+ 

MoO2
2+  

Cd2+  

UO2
2+ 

1:2 

1:2 

1:3 

1:2 

1:2 

1:2 

1:2 

1:2 

1:2 

[VO(PPA)2(H2O)] 
[Mn(PPA)2(H2O)2] 

[Fe(PPA)3] 
[Co(PPA)2(H2O)2] 
[Ni(PPA)2(H2O)2] 
[Zn(PPA)2(H2O)2] 

[MoO2(PPA)2] 
[Cd(PPA)2(H2O)2] 

[UO2(PPA)2] 

DNA binding  

antimicrobial activity  

 

[28] 

Cu2+ 1:2 [Cu(PPA)2(H2O)] DNA binding  

antimicrobial activity  

[29] 

Fe3+ 1:1 [Fe (PPA)(HO)2(H2O)]2 - [30] 

Cinoxacin 

 

Cu2+  

Ni2+ 

1:2 [Cu(Cx)2(H2O)]·3H2O 

[Ni(Cx)2(DMSO)2]·4H2O 

- [31] 

Cu2+ 1:2 [Cu(Cx)2]·2H2O antimicrobial activity [32] 

Co2+ 1:3 [Co(Cx)3]Na·10H2O antimicrobial activity [33] 

Cu2+ 1:2 [Cu(Cx)2]·2H2O 

Cu(Cx)(HCx)Cl·2H2O 

Zn2+ 1:2 [Zn(Cx)2]·4H2O 

Cd2+ 1:1 Cd(Cx)Cl·H2O 

Cd2+  1:3 Na2[(Cd(Cx)3)(Cd(Cx)3(H2O))] 

12H2O 

- [34] 

Oxolinic acid Cu2+ 1:2 [Cu(oxo)2(H2O)] DNA binding 

antimicrobial activity  

[35] 

Ni2+ 1:2 [Ni(oxo)2(H2O)2] DNA binding [36] 

Zn2+ 1:2 [Zn(oxo)2(H2O)2] DNA binding [37] 

VO2+ 

Mn2+ 

Fe3+  

Co2+  

Ni2+  

Zn2+ 

Cd2+  

1:2 

1:2 

1:3 

1:2 

1:2 

1:2 

1:2 

[VO(oxo)2(H2O)] 

[Mn(oxo)2(H2O)2] 

[Fe(oxo)3] 

[Co(oxo)2(H2O)2] 

[Ni(oxo)2(H2O)2] 

[Zn(oxo)2(H2O)2] 

[Cd(oxo)2(H2O)2] 

DNA binding  

 

[38] 
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Table 4. Cont. 

Ligand Metal  

ion  

Molar ratio 

M:L 

General formulae  

of the complexes 

Complex tested/ 

investigated for 

Reference 

 MoO2
2+ 

UO2
2+ 

1:2 

1:2 

[MoO2(oxo)2] 

[UO2(oxo)2] 

DNA binding 

antimicrobial activity 

[39] 

 

Flumequine 

 

Cu2+ 

Zn2+ 

1:2 [Cu(flmq)2(OH2)2] 

[Zn(flmq)2(OH2)2]·H2O 

- [40] 

 

Cu2+ 1:2 [Cu(flmq)2(H2O)] DNA binding  

albumin binding 

[41] 

Ni2+ 1:2 [Ni(flmq)2(H2O)2] DNA binding  

albumin binding  

[42] 

 Zn2+ 1:2 [Zn(flmq)2(H2O)2] DNA binding  

albumin binding 

[43] 

Table 5. Selected chelates of quinolones from second generation.  

Ligand Metal ion Molar  

ratio M:L 

General formulae  

of the complexes 

Complex tested/ 

investigated for 

Reference 

Enoxacin Co2+ 1:2 [Co(HEx)2(ClO4)2]·3H2O 

[Co(HEx)2(NO3)2]·2H2O 

antimicrobial 

activity 

DNA oxidative 

cleavage 

[44] 

Cu2+  

Ni2+  

Mn2+ 

Fe3+ 

1:2 [M(Ex)2(H2O)2]·3H2O 

(M = CuII, NiII or MnII)  

 

[Fe(Ex)(H2O)2]Cl·4H2O  

antimicrobial 

activity 

antiinflammatory 

activity 

[45] 

Ni2+ 1:2 Ni(Ex)2·2.5H2O DNA binding [46] 

Norfloxacin Mg2+  

Ca2+ 

Ba2+ 

1:2 [M(Nf)2](ClO4)2·H2O 

M: Mg2+, Ca2+ (n = 4), 

M: Ba2+ (n = 5) 

- [47] 

Al3+ 1:3 [(Nf·HCl)3Al] solubility behavior [48] 

Bi3+ 1:4 [Bi (C16H18FN3O3)4(H2O)2] antimicrobial 

activity  

solubility behavior 

[49] 

 

Bi3+ 1:3 [Bi(C16H17FN3O3)3(H2O)2] antimicrobial 

activity, including 

Helicobacter 

pylori 

[50] 

Mn2+ 

Co2+  

Fe3+ 

1:2 

 

1:3 

[M(Nf)2]X2·8H2O  

(X = CH3COO-or SO4
2-). 

[Fe(Nf)3]Cl3·12H2O 

- 

 

- 

[51] 

Co2+ 1:2 [Co(NfH-O,O’)2(H2O)2](NO3)2 - [52] 

Mn2+ 

Co2+ 

1:1 

1:1 

[MnCl2(Nf)(H2O)2] 

[CoCl2(Nf)(H2O)2] 

biological 

evaluation against 

Trypanosoma 

cruzi 

[53] 

Ni2+ 1:2 [Ni(Nf)2]·6H2O DNA binding [46] 
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Table 5. Cont. 

Ligand Metal 

ion  

Molar  

ratio M:L 

General formulae  

of the complexes 

Complex tested/ 

investigated for 

Reference 

 Cu2+ 1:2 Cu(HNf)2·5H2O  

[Cu(HNf)2]Cl2·2H2O 

Cu(HNf)2(NO3)2·H2O 

- 

- 

- 

[54] 

1:2 [Cu(NfH)2]Cl2·6H2O DNA binding 

albumin binding 

[55] 

Zn2+ 1:2 [Zn(Nf)2]·5H2O - [56] 

Zn2+ 

Cd2+ 

Hg2+ 

1:2 [M(Nf)2]X2·nH2O [M = Zn(II), 

(X = Cl−, CH3COO−, Br− and 

I−), Cd(II), (X = Cl−, NO3
− and 

SO4
2−) and Hg(II) (X = Cl−, 

NO3
− and CH3COO−)] 

antimicrobial 

activity 

 

[57] 

ZrO2+ 

UO2
2+ 

1:2 

1:3 

[ZrO(Nf)2Cl]Cl·15H2O 

[UO2(Nf)3](NO3)2·4H2O 

antimicrobial 

activity 

[58] 

 

W0  [W(H2O)(CO)3(H-Nf)]· 

(H-Nf)·H2O 

antimicrobial 

activity 

[59] 

Ru3+ 1:2 [Ru(Nf)2Cl2]·4H2O - [60] 

Pt2+ 1:2 [Pt(Nf)2] DNA binding 

DNA cleavage 

ability 

antimicrobial 

activity 

[61] 

 

 

Au3+ 1:1 [AuCl2(Nf)]Cl DNA binding 

albumin binding 

cytotoxic activity 

cell cycle 

[62] 

Y3+ 

Pd2+ 

1:2 

1:2 

[Y(Nf)2(H2O)2]Cl3·10H2O 

[Pd(Nf)2]Cl2·3H2O 

antimicrobial 

activity 

[63] 

 

La3+ 

Ce3+ 

1:3 

1:3 

[La(Nf)3]·3H2O 

[Ce(Nf)3]·3H2O 

antimicrobial 

activity 

[64] 

Ln= 

Nd(III) 

Sm(III) 

Ho(III) 

1:4 [N(CH3)4][Ln(Nf)4]·6H2O interaction with 

DNA and albumin 

[65] 

Pefloxacin Bi3+ 1:3 [Bi(C17H19FN3O3)3(H2O)2] antimicrobial 

activity, including 

Helicobacter 

pylori 

[50] 

Zn2+ 1:2 [Zn (Pf)2(H2O)] ·2H2O - [66] 

Pt2+ 1:2 [Pt(Pf)2] DNA binding 

DNA cleavage 

ability 

antimicrobial 

activity 

[61] 

Ciprofloxacin Mg2+ 1:2 [Mg(Cf)2]·2.5H2O DNA binding [67] 

Mg2+ 1:2 [Mg(Cf)2(H2O)2]·2H2O antimicrobial 

activity 

[68] 
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Table 5. Cont. 

Ligand Metal ion  Molar  

ratio M:L 

General formulae  

of the complexes 

Complex tested/ 

investigated for 

Reference 

 Mg2+ 1:2 

1:3 

[Mg(H2O)2(CfH)2](NO3)2·2H2O 

[Mg(CfH)3](SO4)·5H2O 

- [69] 

 

Mg2+ Ca2+ Ba2+ 1:2 [M(Cf)2](ClO4)2·H2O 

M: Mg2+(n = 6)  

M: Ca2+ (n = 4)  

M: Ba2+(n = 2) 

- [47] 

[70] 

Mg2+ Zn2+ 

Co2+ 

1:2 [Mg(Cf)2(H2O)2]·2H2O  

[Zn(Cf)2]·3H2O  

[Co(Cf)2]·3H2O  

- [22] 

Al3+ 1:3 [(Cf·HCl)3Al]  [48] 

Bi3+ 1:3 [Bi(C17H17FN3O3)3(H2O)2] antimicrobial 

activity, including  

Helicobacter 

pylori 

[50] 

VO2+ 1:2 [VO(Cf)2(H2O)] - [71] 

Mn2+ Co2+ Ni2+ 

Cu2+ Zn2+ Cd2+ 

1:1 [Mn(Cf)(OAc)(H2O)2]·3H2O 

[Co(Cf)(OAc)(H2O)2]·3H2O 

[Ni(Cf)(OAc)]·6H2O 

[Cu(Cf)(OAc)(H2O)2]·3H2O 

[Zn(Cf)(OAc)]·6H2O 

[Cd(Cf)(OAc)(H2O)2]·3H2O  

antimicrobial 

activity 

 

[72] 

 

Mn2+ Fe3+, 

Co2+ 

Ni2+ MoO2
2+ 

1:2 for M2+  

1:3 for Fe3+ 

[Mn(Cf)2(H2O)2] 

[Fe(Cf)3] 

[Co(Cf)2(H2O)2] 

[Ni(Cf)2(H2O)2] 

[MoO2(Cf)2] 

DNA binding [73] 

Co2+ Zn2+ Cd2+ 

Ni2+ Cu2+ 

1:2 [Co(Cf)2(H2O)]·9H2O  

[Zn(Cf)2(H2O)2]·8H2O  

[Cd(HCf)2(Cl)2 ]·4H2O  

M(Cf)2·xH2O  

[M = Ni, Cu, Cd] 

antimicrobial 

activity 

[34] 

Co2+ 1:2 [Co(Cf)2]·3H2O - [22] 

Cu2+ 1:2 [Cu(HCf)2](NO3)2]·6H2O - [74] 

Cu2+ 1:2 [Cu(Cf)2]Cl2·11H2O - [75] 

Cu2+ 1:2 [Cu(Cf)2]Cl2·6H2O - [76] 

Cu2+ 1:2 

 

1:1 

[Cu(HCf)2(ClO4)2]·6H2O 

[Cu(HCf)2(NO3)2]·6H2O 

[Cu(HCf)(C2O4)]·2H2O 

antimicrobial 

activity 

DNA oxidative 

cleavage 

[44] 

Cu2+/ 

Cu+ 

3:2 [CuII(Cf)2(CuICl2)2] antimicrobial 

activity 

Gyrase inhibition 

DNA cleavage 

[77] 

Ru3+ 1:2 [Ru(Cf)2Cl2]Cl·3H2O - [60] 

 

1:3 [Ru(Cf)3]·4H2O DNA interaction [78] 
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Table 5. Cont. 

Ligand Metal 

ion  

Molar  

ratio M:L 

General formulae  

of the complexes 

Complex tested/ 

investigated for 

Reference 

 Pd2+ 1:1 [PdCl2(L)] antitubercular 

activity 

[79] 

Eu3+ 1:2 [Eu(CfH)(Cf)(H2O)4]Cl2· 

4.55H2O 

- [80] 

Lomefloxacin Bi3+ 1:3 [Bi(C17H18F2N3O3)3(H2O)2] antimicrobial 

activity, including  

H. pylori 

[50] 

Y3+ 

ZrO2+ 

UO2
2+ 

1:2 

1:2 

1:3 

[Y(LFX)2Cl2]Cl·12H2O 

[ZrO(LFX)2Cl]Cl·15H2O 

[UO2(LFX)3](NO3)2·4H2O 

antimicrobial 

activity 

[81] 

Cr3+ 

Mn2+ 

Fe3+  

Co2+  

Ni2+  

Cu2+ 

Zn2+ 

Th(IV) 

UO2
2+ 

1:1 

1:1 

1:1 

1:1 

1:1 

1:1 

1:1 

1:1 

1:1 

[Cr(LFX)(H2O)4]Cl3 

[Mn(LFX)(H2O)4]Cl2 

[Fe(LFX)(H2O)4]Cl3·H2O 

[Co(LFX)(H2O)4]Cl2 

[Ni(LFX)(H2O)4]Cl2·H2O 

[Cu(LFX)(H2O)4]Cl2·2H2O 

[Zn(LFX)(H2O)4]Cl2 

[Th(LFX)(H2O)4]Cl4 

[UO2(LFX)(H2O)2](NO3)2 

antimicrobial, 

antifungal, and 

anticancer activity 

[82] 

Ofloxacin 

 

Mg2+ 1:2 [Mg(R-oflo)(S-

oflo)(H2O)2]·2H2O  

antimicrobial 

activity 

[83] 

Ca2+ 

Mg2+ 

Ba2+ 

Ni2+ 

Co2+ 

Zn2+ 

1:1 Ca(oflo)Cl·2H2O 

Mg(oflo)Cl·2H2O 

Ba(oflo)Cl·2H2O  

Ni(oflo)Cl·2H2O 

Co(oflo)Cl·2H2O 

Zn(oflo)Cl·H2O 

- [84] 

 

Cu2+ 1:2 [CuII(ofloH)2][(CuICl2)2] DNA binding 

albumin binding 

[55] 

Co2+ 

Zn2+ 

1:2 [M(oflo)2]·4H2O - [85] 

Cu2+ 

Ni2+ 

1:1 

 

 

1:2 

M(oflo)Cl·2.5H2O 

M(oflo)(SO4)0.5·2.5H2O 

M(oflo) (NO3)·2.5H2O  

[Cu(oflo)2·H2O]·2H2O 

Ni(oflo)2·3H2O 

- [86] 

Pd2+ 1:1 [PdCl2(L)] antitubercular 

activity 

[79] 

Pt2+ 1:2 [Pt(oflo)2] DNA binding 

antimicrobial 

activity  

[61] 

Bi3+ 1:3 [Bi(C17H17FN3O3)3(H2O)2] antimicrobial 

activity, including  

Helicobacter 

pylori 

[50] 
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Table 5. Cont. 

Ligand Metal ion Molar  

ratio M:L 

General formulae  

of the complexes 

Complex tested/ 

investigated for 

Reference 

 Pr3+ 

Nd3+ 

1:1 [PrL(NO3)2(CH3OH)](NO3) 

[NdL(NO3)2(CH3OH)](NO3) 

DNA binding 

DNA cleavage 

activity 

antioxidation 

properties 

[87] 

Enrofloxacin VO2+ 1:2 [VO(erx)2(H2O)] antimicrobial 

activity 

DNA binding 

[88] 

 

MO2
2+ 1:2 [MoO2(erx)2] 

 

antimicrobial 

activity  

DNA binding 

[89] 

 

Mn2+ 

Fe3+  

Co2+ 

Ni2+ Zn2+ 

Cd2+ 

UO2
2+ 

1:2 for M2+,  

1:3 for Fe3+ 

 

[Mn(erx)2(H2O)2] 

[Fe(erx)3] 

[Co(erx)2(H2O)2] 

[Ni(erx)2(H2O)2] 

[Zn(erx)2(H2O)2] 

[Cd(erx)2(H2O)2] 

[UO2(erx)2] 

antimicrobial 

activity 

DNA binding 

[90] 

Ni2+ 1:2 [Ni(erx)2(H2O)2] DNA binding 

albumin binding  

[91] 

Cu2+ 

 

1:2 [Cu(erx)2]Cl antimicrobial 

activity 

[92] 

Cu2+ 1:2 [Cu(erx)2(H2O)] DNA binding 

antimicrobial 

activity  

[93] 

Cu2+ 1:2 [Cu(erx)2(H2O)2] - [94] 

Ru3+ 1:2 [Ru(erx)2Cl2]Cl·5H2O - [60] 

Table 6. Selected chelates of quinolones from third and fourth generation.  

Ligand Metal 

ion  

Molar 

ratio M:L 

General formulae  

of the complexes 

Complex 

tested/investigated for 

Reference 

Sparfloxacin Bi3+ 1:3 [Bi(C19H21F2N4O3)3(H2O)2] antimicrobial activity, 

including Helicobacter 

pylori 

[50] 

Fe3+, 

VO2+ 

Mn2+ 

Ni2+ 

UO2
2+ 

1:3 1:2 for 

M2+  

[Fe(sf)3] 

[VO(sf)2(H2O)] 

[Mn(sf)2(H2O)2] 

[Ni(sf)2(H2O)2] 

[UO2(sf)2] 

DNA binding 

Serum albumin binding 

[95] 

Co2+ 1:2 [Co(sf)2(H2O)2] antimicrobial activity  

DNA binding 

[96] 

Cu2+ 1:2 [Cu(sf)2] antimicrobial activity  

DNA binding 

[97] 
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Table 6. Cont. 

Ligand Metal 

ion  

Molar 

ratio M:L 

General formulae  

of the complexes 

Complex 

tested/investigated for 

Reference 

 Mn2+ 

Co2+ 

1:1 

1:1 

[MnCl2(sf)(H2O)2] 

[CoCl2(sf)(H2O)2] 

biological evaluation 

against Trypanosoma 

cruzi 

[53] 

MO2
2+ 1:2 [MoO2(sf)2] antimicrobial activity  

DNA binding 

[89] 

 

Pd2+ 1:1 [PdCl2(L)] antitubercular activity [79] 

Pt2+ 1:2 [Pt(sf)2] DNA binding 

DNA cleavage ability 

antimicrobial activity 

[61] 

Au3+ 1:1 [AuCl2(sf)]Cl DNA binding 

albumin binding 

cytotoxic activity 

cell cycle 

[62] 

Levofloxacin Mg2+ 1:2 [Mg(S-oflo)2(H2O)2]·2H2O antimicrobial activity [83] 

Mn2+ 

Co2+ 

Ni2+ 

Cu2+ 

Zn2+ 

1:2 [M(levo)2(H2O)2]·nH2O  

(n = 2, excepting for Cu2+,  

n = 3) 

antimicrobial activity 

immunomodulatory 

activity 

cytotoxicity 

[98] 

Zn2+ 1:2 [Zn(levo)2(H2O)2] DNA binding 

albumin binding 

[99] 

Pd2+ 1:1 [PdCl2(L)] antitubercular activity [79] 

Pt2+ 1:2 [Pt(levo)2] DNA binding 

DNA cleavage ability 

antimicrobial activity 

[61] 

Au3+ 1:1 [AuCl2(levo)]Cl DNA binding 

albumin binding 

cytotoxic activity 

cell cycle 

[62] 

Gatifloxacin Mg2+ 

Ca2+ 

Cr3+ 

Mn2+ 

Fe3+ 

Co2+ 

Ni2+ 

Cu2+ 

Zn2+ 

Cd2+ 

1:2 

 

[Mg(gat)2(H2O)2]Cl2·2H2O 

[Ca(gat)2(H2O)2]Cl2·2H2O 

[Cr(gat)2 Cl(H2O)2]Cl·2H2O 

[Mn (gat)2(H2O)2]·6H2O 

[Fe(gat)2Cl(H2O)2]Cl·2H2O 

[Co (gat)2(H2O)2]·4H2O 

[Ni (gat)2(H2O)2] Cl2·2H2O 

[Cu (gat)2(H2O)2]·H2O 

[Zn (gat)2(H2O)2]·2H2O 

[Cd (gat)2(H2O)2] Cl2·4H2O 

antimicrobial activity 

antifungal activity 

antiiinflamatory 

[100] 
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Table 6. Cont. 

Ligand Metal 

ion  

Molar 

ratio M:L 

General formulae  

of the complexes 

Complex 

tested/investigated for 

Reference 

 Zn2+ 

Ni2+ 

Co2+ 

1:2 [M(gat)2(H2O)2]·4H2O antimicrobial activity [101] 

Bi3+ 1:3 [Bi(C19H21FN3O4)3(H2O)2] antimicrobial activity, 

including Helicobacter 

pylori 

[50] 

Pd2+ 1:1 [PdCl2(L)] - [79] 

Pt2+ 1:2 [Pt(gat)2] DNA binding 

DNA cleavage ability 

antimicrobial activity 

[61] 

Rh3+ 1:1 [X]+fac-[RhCl3(L)(gat)]- 

 where L = H2O, 

Dimethylsulfoxide (DMSO), 

Tetramethylenesulfoxide 

(TMSO); 

gat = Gatifloxacin and  

X = Na or [H(DMSO)2]. 

antimicrobial activity [102] 

Moxifloxacin Cu2+ 1:1 [Cu(MOX)(H2O)2Cl]BF4 anti-proliferative 

and apoptosis-inducing 

activity 

[103] 

Pd2+ 

 Y3+ 

Ti(IV) 

Ce(IV) 

1:2 

1:2 

1:2 

1:2 

[Pd(MOX)2(H2O)2]Cl2·6H2O 

[Y(MOX)2Cl2]Cl·12H2O 

[Ti(MOX)2](SO4)2·7H2O 

[Ce(MOX)2](SO4)2·2H2O 

antimicrobial activity [104] 

VO2+ 

Zr(IV) 

UO2
2+ 

1:2 

1:2 

1:3 

[VO(MOX)2H2O]SO4·11H2O 

[ZrO(MOX)2Cl]Cl·15H2O 

[UO2(MOX)3](NO3)2·3H2O 

antimicrobial activity [105] 

The first review regarding the interactions of metal ions with quinolone was published ten years ago 

and discussed selected crystal structures of quinolone–metal compounds, different physico-chemical 

methods of characterization, as well as some results of bioactivity test [21]. The structural 

characteristics of a part of fluoroquinolone complexes and their biological activity were reviwed four 

years ago [106]. A recent comprehensive review [107] presented the structures and the biological 

activity of complexes of some quinolones with Cu(II), Ni(II), Co(II) and Zn(II) and analysed the 

influence of the second ligand on biological activity.  

In one report, norfloxacin acts as bidentate ligand through two carboxylate oxygen atoms (Figure 6) 

in complexes with Co(II) and Fe(III) ions [108]. A quite rare coordination mode of quinolones occurs 

in a bidentate fashion via the piperazine nitrogen atoms. This coordination was reported in complexes 

of general formula [PtCl2(L)] (Figure 7) formed by ciprofloxacin, levofloxacin, ofloxacin, 

sparfloxacin, and gatifloxacin with Pt(II) [109], and could be explained through the basicity both of N4 

nitrogen from piperazine ring and of N1 nitrogen, the last one evidenced in recent studies [110].  
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Figure 6. The proposed structure of complexes of Fe(III)-Nf and Co(II)-Nf (adapted  

from [108]). 
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Figure 7. Proposed structure for [PdCl2(L)] (adapted from [104]). 
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3.2. Chelates Introduced into the Polyoxometalates (POMs) Surface 

Quinolone molecules are excellent multidentate ligands able to construct metal–organic polymers 

with medical applications, due to the higher electronic cloud density of oxygen and nitrogen  

atom [111]. Such hybrid organic-inorganic materials have been obtained by introducing a quinolone 

chelate into the surface of a polyoxometalate anion. The polyoxometalates (POMs) are known as  

anti-tumor, antiviral, and antibacterial inorganic medical agents, and the modifying of their surface 

with such compounds with biological activity is aimed to ameliorate their properties. 

Generally, these complexes were obtained by hydrothermal reaction of a quinolone with a metal salt 

and a polyoxometalate (in the acidic form or as ammonium salt) with adjusting the pH. 

One of the simplest compound of this series is V4O10(μ2-O)2[VO(H-Cf)2)]2·13H2O, with a structure 

consisting in one {V4O12} unit and two corner-sharing octahedral {VO6}-ciprofloxacin units linked 

through two μ2-O bridges [112]. 

Anions with α-Keggin structure (PW12O40
4-, SiW12O40

4-) were used as inorganic building  

blocks in compounds constructed from PW12 or SiW12 clusters and two M(Quin)2 chelates.  

The PW12 or SiW12 clusters and quinolone molecule as chelating bidentate organic ligands coordinate 

the metal ions together (Figure 8). The binuclear metal clusters are connected to the POM clusters, 

bound as unidentate or as bridging bi-dentate inorganic ligands, forming a 1D chain architecture, as 

shown in Figure 9.  
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Figure 8. A binuclear metallic cluster of quinolone bound to POM clusters. 

 

Figure 9. Schematic representation of the 1D chain structure, constructed by POMs  

and M-quin binuclear clusters with POM bound as (a) bidentate bridging ligand or  

(b) unidentate ligand. 
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Starting to polyoxometalates (POMs) and the quinolone antibacterial drug pipemidic acid (HPPA), 

complexes as {[Co(PPA)2]H2[SiW12O40]}·HPP·3H2O [113], [Cu(PPA)2]2·[PW12O40]·6H2O [114], 

{[Ni(PPA)2]H4[SiW12O40]}·HPPA·3H2O, and {[Zn(PPA)2]2H4[SiW12O40]}·3H2O [115] were obtained. 

By introducing different quinolone antibacterial drugs into the octamolybdate POMs new compounds 

have been isolated, such as [CuII(L1)2(H2O)2]H2[β-Mo8O26]·4H2O (1), [CuII
2(L

2)4][δ-Mo8O26]·4H2O 

(2), [CuII
2(L

3)2(H2O)2][β-Mo8O26] (3), [CuII
2(L

4)2(H2O)4][β-Mo8O26]·2H2O (4) (where L1 = enrofloxacin; 

L2 = pipemidic acid; L3 = norfloxacin; L4 = enoxacin) [111]. 

3.3. Metal Complexes with Quinolone Acting as Unidentate Ligand 

The quinolones bearing a piperazinyl ring in the 7-position could form complexes where the 

terminal piperazinyl nitrogen (N4) is involved in the coordination to the metal ion. This coordination 

mode was reported for complexes with transition metals Ag(I), Au(III), and Ru(III). The structure 

proposed for the complex Ag2(Nf)2(NO3)2 [116] is presented in Figure 10. 
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Figure 10. Proposed structure for the complex Ag(H-Nf)2(NO3) [116]. 
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By the reaction of Ag(I) and Au(III) with norfloxacin, a dinuclear complex Ag2(Nf)2(NO3)2  

[Figure 11(a)], and a mononuclear complex [Au(Nf)2(H2O)2]Cl3 [Figure 11(b)] were obtained [117]. 

Figure 11. Proposed structures for (a) Ag2(Nf)2(NO3)2, and (b) [Au(Nf)2(H2O)2]Cl3 [117]. 
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(a)                                                     (b) 

In some complexes of Ru(III), formulated as Ru(L)2Cl3(DMSO)m·xH2O (L: pipemidic acid, 

enoxacin, enrofloxacin, ciprofloxacin, norfloxacin, ofloxacin, levofloxacin), quinolones are bound as 

unidentate ligand coordinate through the N4 piperazinyl nitrogen [118,119].  

3.4. Polymeric Complexes 

Dimeric complexes [Mg2(H2O)6(HNf)2]Cl4⋅4H2O and [Ca2(Cl)(HNf)6]Cl3⋅10H2O [120] are formed 

with norfloxacin as bidentate bridging ligand bound through the pyridone oxygen and one carboxylate 

oxygen atom (unidentate bridging) (Figure 12). 
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Figure 12. Structure of the dimeric complex [Mg2(H2O)6(HNf)2]Cl4⋅4H2O (adapted  

from [120]). 
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A similar coordination it was found in the complex [Pb(H-Nf)(ONO2)2]2 (Figure 13) [121]. 

Figure 13. Structure of the dimeric complex [Pb(H-Nf)(ONO2)2]2 (adapted from [121]). 
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X-ray determination of crystal structure of the dinuclear complexes [Cd2(Cx)4(H2O)2]·10H2O and 

[Cd2(Cx)4(DMSO)2]·2H2O revealed that the cadmium ion is heptacoordinated; the coordination 

environment consists in two cinoxacinate ions acting as tridentate chelate and bridging ligands, one as 

bidentate chelate ligand, and one water molecule [33]. 

In polymeric complexes, different modes of coordination are simultaneously possible. In the case of 

two Fe(II) complexes, norfloxacin adopts different modes of coordination depending on the synthesis 

conditions. In the structure of Fe(H-Nf)2(SO4)⋅2H2O, Fe(II) is surrounded by two norfloxacinate anions 

bound as bidentate ligand coordinated through the pyridone oxygen and one carboxyl carboxylate 

oxygen and two norfloxacin molecules coordinated as unidentate ligand by two oxygen atoms from 

two different carboxylate [Figure 14(a)]. In the other complex, Fe(Nf)2⋅4H2O, two molecules are 

bound as bidentate ligand, and two as unidentate ligand coordinated through piperazine nitrogen 

[Figure 14(b)] [122]. 
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Figure 14. Coordination modes of norfloxacin in (a) Fe(H-Nf)2(SO4)⋅2H2O and  

(b) Fe(Nf)2⋅4H2O (adapted from [122]). 
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In a 1D ladder-like silver(I) coordination polymer, {[Ag4(H-Cf)2(Cf)2(NO3)2]⋅4H2O}n [123] the 

pseudo-tetranuclear building blocks are constructed via unidentate ciprofloxacin coordinated through 

the N4 piperazine atom and tetradentate deprotonated ciprofloxacin ligands (Figure 15). 

Figure 15. Coordination modes of ciprofloxacin and its anion in  

{[Ag4(H-Cf)2(Cf)2(NO3)2]⋅4H2O}n [123]. 
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3.5. Ionic Complexes 

Based on the basic function of the N4 pyperazinyl atom, quinolones are protonated in acidic 

medium, forming ionic chlometalates, generally obtained by slow evaporation of an acidic solution of 

complex and metal salt. Most of these complexes were tested for their antimicrobial activity  

(see Subsection 4.3). 

The chloroantimonates (III) obtained with nalidixium C12H13N2 (nalidixium cation) and 

ciprofloxacinium ions have the general formulae (C12H13N2O3)[SbCl4]⋅H2O [124], and (C17H19N3O3F) 

[SbCl5]⋅H2O (ciprofloxacinium cations (CfH3)
2+) [125] respectively. Two types of chlorobismutates 

(III) were obtained with ciprofloxacin, (CfH2)(CfH)[BiCl6]⋅2H2O [126] and (CfH2)2[Bi2Cl10]⋅4H2O [127]. 
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The tetrachlorocuprates (II) synthesized from norfloxacin, pefloxacin, and cinoxacin,  

were formulated as (NfH2)(NfH)[CuCl4]Cl⋅H2O [128], (C17H22FN3O3)
2+[CuCl4]

2− [129], and 

(CxH2)[CuCl4]⋅H2O [129], respectively. 

Other chloromethalates, such as enrofloxacinium tetrachloroferate (II), (erxH2)[FeCl4]Cl [130], 

ciprofloxacinium tetrachlorozincate (II) dihydrate, [C17H19N3O3F]2[ZnCl4]⋅2H2O [131], 

ciprofloxacinium tetrachloroaurate (III) monohydrate, (CfH2)[AuCl4]· H2O [132] and ciprofloxacinium 

hexachlororuthenate (III) trihydrate, (CfH2
+)3[RuCl6]⋅3H2O [78] were also reported. 

4. Consequences and Applications of Metal-Quinolone Complexation 

4.1. Pharmaceutical Aspects 

Some chelates of quinolones with trivalent cations have shown an improved solubility compared to 

that of the free ligand, and this behaviour could be advantageous for pharmaceutical formulation. The 

hydrochlorides of the aluminium (III) complexes of ciprofloxacin and norfloxacin were reported [48,133]. 

Both complexes are more soluble than the antibiotics themselves. The complexes can be used for 

developing more dose-efficient formulations, such as compressed tablet dosage forms [48,134]. The 

pharmacodynamic properties of ciprofloxacin are not drastically affected upon complexation with 

aluminium. The complex [(HCl·Cf)3Al] showed a longer post-antibiotic effect (PAE) compared to that 

the free ciprofloxacin [135].  

The solubility studies of a bismuth (III) complex of norfloxacin, [Bi(C16H18FN3O3)4(H2O)2] (BNC) 

in different pH buffers indicated that the solubility of the BNC was higher than that of norfloxacin 

until pH 6.5. Above this pH value, a significant decrease in the solubility of BNC was observed, while 

the solubility of norfloxacin did not change significantly. The increased solubility can be an advantage 

for the antibacterial activity of the bismuth complex [49]. 

4.2. Biopharmaceutical and Pharmacokinetic Implications 

Reducing the oral bioavailability of quinolones in the presence of multivalent cations is the main 

consequence of the metal ions-quinolones interaction, and it was reported for the first time in  

1985 [136]. A reduction in ciprofloxacin biavailability in healthy human subjects was observed at  

co-administration with ferrous salts and a combination of multi-vitamin and mineral preparation. In 

correlation with UV-Vis spectra features, the formation of a 1:3 ferric ion-ciprofloxain complex was 

proposed as the cause of the reduction in ciprofloxacin biovailability [137]. A strong correlation 

between the reduction in oral bioavailability of norfloxacin in the presence of divalent and trivalent cations 

and the magnitude of formation constants measured in vitro was established (Ca2+ < Mg2+ < Zn2+ ~ Fe2+ < 

Al3+). A marked difference between the effect of Zn2+ and Fe2+ was observed in vivo, namely a greater 

reduction in norfloxacin absorption with co-administration of Fe2+. The oxidation of Fe2+ to Fe3+ in 

gastrointestinal tract was proposed as possible explanation [138].  

Several mechanisms were proposed in order to explain the decreased biovailability of quinolone in 

the presence of metal ions. The first hypothesis was that the reduction of quinolone absorption is due 

to the formation of insoluble and unabsorbable chelates in the gastrointestinal tract [139–141]. On the 

contrary, in other studies it was observed that the solubility of lomefloxacin increases in the presence 



Molecules 2013, 18 11174 

 

 

of Ca2+, Mg2+, Al3+ şi Fe3+ ions [142]. This means that the reduction of the gastric absorption of 

lomefloxacin at co-administration with these metal ions, are not caused by the precipitation, but by a 

decrease of the octanol-water partition cofficient. Only for Bi3+, solubility and thus absorption of 

lomefloxacin, decresed as a result of formation of species with low solubility [143]. The permeability 

through intestinal mucosa of fluoroquinolone alone and in the presence of metal ions was studied  

in vitro. The effect of Ca2+, Mg2+, Fe2+ was tested with ciprofloxacin, while the effect of Al3+ was 

tested with ciprofloxacin, norfloxacin and ofloxacin. The experimental data revealed that the 

fluoroquinolone-metal ion combinations resulted in a reduced intestinal permeability compared to that 

of the corresponding fluoroquinolone, leading to a reduction of fluoroquinolone bioavailability [144]. 

4.3. Mechanism of Action of Quinolones 

The DNA-binding capacity of quinolone complexes was studied in relation with the mechanism of 

action of quinolones. Experimental data suggested an interaction of quinolone-Mg2+ complex with 

DNA and gyrase and not a direct interaction of free quinolones with DNA, and a model for the ternary 

complex was proposed. In this model, Mg2+ acts as a bridge between the phosphate groups of the 

nucleic acid and the carbonyl and carboxyl moieties of norfloxacin, with additional stabilization 

arising from stacking interactions between the condensed rings of the drug and DNA bases [145].  

Interaction of an oligonucleotide duplex and ciprofloxacin in the absence and in the presence of 

Mg2+ was studied and a model of the ternary Cf–Mg2+–duplex adduct orientation was  

proposed. Docking carried out on this model sustained the orientation of the CFX–Mg2+ in the minor 

groove of DNA [146].  

Interaction with calf thymus DNA was investigated in vitro using different associations between 

quinolone and divalent metal ions: norfloxacin-Cu2+ [147], ciprofloxacin-Mg2+, -Cu2+ [148,149], 

levofloxacin-Cu2+ [150], gatifloxacin- Mg2+,- Cu2+ [149,151], -Co2+, -Cd2+ [151], fleroxacin- Mg2+,  

-Cu2+ [146], sparfloxacin-Mg2+ [149,152], -Cu2+ [149], -Cd2+ [152], -Cr(III), -Cr(VI) [153], 

pazufloxacin-Cu2+ [154]. 

From the experimental results, it was concluded that the metal ion plays an intermediary role in the 

interaction between quinolone and DNA, and the metal complex of quinolone can interact with DNA 

by an intercalative binding model [155,156]. In vitro experiments demonstrated the hypothesis that, on 

the one hand, DNA gyrase cannot bind quinolones in the absence of DNA, and on the other hand, the 

quinolone-gyrase-DNA complex is formed in the presence of Mg2+. 

Magnesium and related metal ions affect the stability and function of topoisomerases: they reduce 

the stability of protein thus increasing the structural flexibility required for the structural changes 

involved in catalytic cycle [157,158]. On the other side, the divalent metal ions (especially Mg2+) 

might play a role in enzyme poisoning due to their ability to bind the topoisomerase II-directed drugs, 

including quinolones [158]. The coordination environment proposed for Mg2+ bound to topoisomerase 

IV consists in two C3/C4 oxygen atoms from a quinolone molecule chelated and four water molecules. 

Two of these water molecules are involved in hydrogen bonds with serine side chain hydroxyl group 

and with serine glutamic acid side chain carboxyl group. It was suggested that the interaction between 

quinolone and topoisomerases is mediated by this water-metal ion “bridge” [159]. Mutations of one of 
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both amino acid residues that disrupt the bridge function partially or total, and thus the protein-

quinolone interaction, are the most common causes of quinolone resistance [160]. 

4.4. Metal Complexes with Biological Activity 

4.4.1. Antimicrobial Activity 

The consequence of interaction with metal ions on the biological activity of quinolones was 

approached in the first instance as a negative phenomenon, and some evidences of reduction in the 

antimicrobial activity of quinolones in the presence of metal ions [161,162] support this assumption. 

Two possible mechanisms were proposed for explaining the reduction of ciprofloxacin activity by 

metal cations. First of these, especially valid for chelates with 1:1 stoichiometry, could be a decreased 

permeation of the antibiotic into bacterial cells, while the second one is the formation of an  

inactive chelate [25].  

However, for many chelates of quinolones obtained in solid state, an equal or superior activity was 

observed compared to that of parent drugs. Selected results expressed as minimal inhibitory 

concentration (MIC, μg mL−1) or as the inhibition diameter zone (mm) are presented in Tables 7 and 8. 

Increased biological activity of metal chelates was explained by the overtone concept of cell 

permeability and chelation theory. Upon chelation, the polarity of a metal ion is reduced due to the 

partial sharing of positive charge with the donor groups of ligand and as a consequence of overlap with 

the ligand orbitals. Chelation increases the delocalization of π electrons over the whole chelate ring 

and thus increases the lipophilic nature of the central ion. This increased in lipophilicity enhances the 

passage of complex through the lipid membranes and the penetration in cells [163–165]. 

Table 7. Minimal inhibitory concentration (MIC, μg mL−1) of the drugs for some  

assayed bacteria. 

Compound 

Bacterial strain 

Ref 
Gram (+) Gram (-) 

S.  
aureus 

B.  
subtilis 

E.  
faecalis 

E. 
coli 

P. 
aeruginosa 

K. 
pneumoniae 

S. 
typhimurium 

Pipemidic acid 16.0 - - 64.0 64.0 - - [29] 

[Cu(PPA)2(H2O)] 16.0 - - 8.0 8.0 - - 

[VO(PPA)2(H2O)]  16.0 - - 64.0 64.0 - - [28] 

[Mn(PPA)2(H2O)2] 16.0 - - 64.0 64.0 - - 

[Fe(PPA)3] 32.0 - - 64.0 64.0 - - 

[Co(PPA)2(H2O)2] 32.0 - - 64.0 64.0 - - 

[Ni(PPA)2(H2O)2] 32.0 - - 64.0 32.0 - - 

[Zn(PPA)2(H2O)2] 32.0 - - 32.0 32.0 - - 

[MoO2(PPA)2] 16.0 - - 64.0 64.0 - - 

[Cd(PPA)2(H2O)2] 16.0 - - 64.0 64.0 - - 

[UO2(PPA)2] 8.0 - - 8.0 8.0 - - 

Cinoxacin > 64 - > 64 4.0 > 64 8.0 4.0 [33] 

[Cu(Cx)2]·2H 2O > 64 - > 64 4.0 > 64 8.0 4.0 
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Table 7. Cont. 

Compound 

Bacterial strain 

Ref. 
Gram (+) Gram (-) 

S.  
aureus 

B.  
subtilis 

E.  
faecalis 

E.  
coli 

P.  
aeruginosa 

K. 
pneumoniae 

S. 
typhimurium 

 [Co(Cx)3]Na·10H2O > 64 - > 64 2.0 > 64 2.0* 2.0  

Cu(Cx)(HCx)Cl·2H2O > 64 - > 64 4.0 > 64 8.0* 8.0 

[Zn(Cx)2]·4H2O > 64 - > 64 4.0 > 64 4.0* 4.0 

Cd(Cx)Cl·H2O > 64 - 64 4.0 > 64 8.0* 8.0 

[Cd2(Cx)4(DMSO)2]·2H2O > 64 - 64 8.0 > 64 8.0* 8.0 

[Cd2(Cx)4(H2O)2]·10H2O > 64 - 64 4.0 > 64 4.0* 4.0 

Oxolinic acid 16 - - 1 16 - - [35] 

[Cu(oxo)2(H2O)] 64 - - 64 32 - - 

Enoxacin 1 0.25 4 0.12 0.12 0.12 0.12 [44] 

[Co(HEx)2(ClO4)2]·3H2O 2 0.5 8 0.25 0.25 0.25 0.12 

[Co(HEx)2(NO3)2]·2H2O 1 0.25 8 0.25 0.25 0.25 0.12 

Norfloxacin 0.060 - - 0.050 - 0.075 - [49] 

[Bi(C16H18FN3O3)4(H2O)2] 0.045 - - 0.025 - 0.060 - 

Ciprofloxacin 1 0.12 1 0.03 0.5 0.03 0.016 [44] 

[Cu(HCf)2(NO3)2]·6H2O 0.5 0.12 0.5 0.03 1 0.06 0.03 

[Cu(HCf)(C2O4)]·2H2O 0.5 0.12 2 0.06 1 0.06 0.06 

Ciprofloxacin 0.25 0.03 1 0.016 0.12 0.03 0.016 [34] 

[Co(Cf)2(H2O)]·9H2O 0.25 0.06 1 0.004 0.12 0.016 0.008 

[Zn(Cf)2(H2O)2]·8H2O 0.25 0.03 1 0.004 0.12 0.03 0.016 

Ni(Cf)2· 10H2O 0.5 0.03 1 0.12 0.12 0.03 0.016 

Cu(Cf)2· 6H2O 0.25 0.03 1 0.004 0.12 0.03 0.008 

Ofloxacin 0.75 ** 0.5 10 0.2 7 0.7 0.75 *** [83] 

[Mg(R-oflo) 

(S-oflo)(H2O)2]·2H2O  

1 ** 0.8 15 0.25 10 1 1 *** 

Levofloxacin 0.3 ** 0.3 4 0.15 3 0.25 0.5 *** 

[Mg(S-oflo)2(H2O)2]·2H2O 0.6 ** 0.5 4 0.15 5 0.5 0.75 *** 

Enrofloxacin 8 - - 1 1 - - [93] 

[Cu(erx)2(H2O) 32 - - 0.125 0.125 - - 

erx 0.012 - - - - - - [92] 

 

[89] 

[Cu(erx)2]Cl 0.0085 - - - - - - 

Herx 8 - - 1 1 - - 

[VO(erx)2(H2O)] 8 - - 4 4 - - 

[Cu(erx)2(H2O)] 4 - - 0.125 0.125 - - 

[MO2(erx)2] 4 - - 1 1 - - 

Abbreviations: S. aureus, Staphylococcus aureus; B. subtilis, Bacillus subtilis; E. faecalis, Enterococcus (Streptococcus) 

faecalis; E. coli, Escherichia coli; P. aeruginosa, Pseudomonas aeruginosa; K. Pneumoniae, Klebsiella pneumoniae; S. 

thyphimurium, Salmonella typhimurium; * Klebsiella spp; ** S. epidermidis; *** S. enteriditis. 
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Table 8. The inhibition diameter zone values (mm) for norfloxacin and some of  

its complexes. 

Compound 

Bacterial strain 

Reference Staphylococcus 
aureus 

Escherichia 
coli 

Pseudomonas 
aeruginosa  

Norfloxacin 12 25 13 [63] 
 [Y(NOR)2(H2O)2]Cl3·10H2O  31 39 47 

[Pd(NOR)2]Cl2·3H2O  27 26 28 

[La(nor)3]·3H2O 12 10 9 [64] 

[Ce(nor)3]·3H2O 12 11 10 

In fact, many more factors should be considered for metal complexes with antimicrobial activity: (i) 

the nature of the metal ion; (ii) the nature of the ligands; (iii) the chelate effect; (iv) the total charge of 

the complex; (iv) the nature of the ion neutralizing the ionic complex; and (vi) the nuclearity of the 

metal center in the complex [28,29,89–91,107]. A detailed comment of the effect of these factors on 

the biological activity of metal-quinolone complexes was made in a recent review [107]. 

The results obtained in some particular bacterial strains (Mycobacterium tuberculosis and 

Helycobacter pylori), which have not been included in Tables 7 and 8, are worth emphasizing 

distinctively. Fluoroquinolones have been used successfully in helping cure multidrug-resistant 

tuberculosis, and studies in mice suggest that they can be considered as first line drugs to shorten the 

duration of therapy [166]. The main drawback with these agents is the high level of resistance, mainly 

associated with mutation at gyrA or gyrB genes [167,168]. Metal coordination to quinolones can be 

used not only as strategy to enhance their activity, but also to overcome the drug resistance. The 

complex of Cu(II) with ciprofloxacin having general formula [Cu(Cf)2(BF4)2]·6H2O exhibited a 

significant enhancement in the antitubercular activity comparing to ciprofloxacin alone [169]. A series 

of Pd(II) and Pt(II) complexes with general formula [MCl2(L)] (where L = ciprofloxacin, levofloxacin, 

ofloxacin, sparfloxacin, and gatifloxacin) were evaluated against Mycobacterium tuberculosis virulent 

strain H37Rv. The Pd(II) and Pt(II) complexes with sparfloxacin and the Pt(II) complex with 

gatifloxacin were the most active within each series in inhibiting bacterial growth, while the least 

active complexes of the series were the Pd(II) complex with ciprofloxacin and the Pt(II) complex with 

ofloxacin. Complexes have not shown better antitubercular activity than free gatifloxacin, but their 

activity was good and, except the complex of Pd(II) with ciprofloxacin, all of them were more active 

than rifampicin [79]. The results are in agreement with the in vitro activities of the parent drugs against 

M. tuberculosis isolated: ciprofloxacin < or = ofloxacin < sparfloxacin < gatifloxacin [170]. 

Fluoroquinolones from new generations, like levofloxacin, moxifloxacin, gatifloxacin or sitafloxacin 

have demonstrated efficacy in Helicobacter pylori eradication, in third-line or second-line triple 

therapy, in combination with a proton pump inhibitor (PPI) and amoxicilin [171,172]. Bismuth-containing 

quadruple therapy (omeprazole, bismuth, metronidazole and tetracycline) is an alternative first choice 

treatment for H. pylori [173]. Good results were also obtained with quadruple therapy of bismuth 

subcytrate-moxifloxacine-tetracycline-lansoprazole (BMTL) with high eradication rate and relatively 

mild side effects [174]. Starting from these premises, a series of bismuth-fluoroquinolone complexes 

[Bi(Flq)3(H2O)2] (Flq: norfloxacin, ofloxacin, ciprofloxacin, sparfloxacin, lomefloxacin, pefloxacin, 
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gatifloxacin) were evaluated for their anti-H. pylori activity, and were found to be more potent against 

all strains of H. pylori used, comparing to the parent FLQs. Moreover, the synthesized complexes also 

showed high potency against some fluoroquinolone-resistant strains of H. pylori. [50].  

4.4.2. Antifungal and Antiparasitic Activity 

Altough quinolones themselves does not exhibit antifungal activity some of complexes generated 

by newer fluoroquinolones act not only as antimicrobial agents, but have also shown antifungal 

activity. Complexes with 1:1 stoichiometry of levofloxacin with Cr(III), Fe(III), Co(II), Ni(II), Cu(II), 

Th(IV), Mn(II), Zn(II) and UO2(II) have proved an antifungal effect higher than the free ligand against 

Candida albicans [82]. Complexes of gatifloxacin with Ni(II), Cu(II), Zn(II), Cd(II), Fe(III),  

Ca(II), Mg(II),Cr(III), Mn(II) and Co(II) having a stoichiometry 1:2 (metal: ligand) have excellent 

activity as compared to standard drug toward the fungi Trichophyton rubrum, Candida albicans and 

Fusarium solani [100].  

The complexes [MnCl2(sf)(H2O)2] and [CoCl2(sf)(H2O)2] displayed a considerable antiparasitic 

activity against Trypanosoma cruzi. The corresponding complexes of norfloxacin have a differentiated 

activity: the Mn(II) complex did not improve the anti-parasitic effect of the free norfloxacin, while the 

Co(II) complex displayed a 4-fold higher activity than norfloxacin ligand [53]. 

A new field of research was opened starting to the synthesis of organometallic ruthenium 

complexes of some quinolone antibacterial agents. The organometallic ruthenium complex of 

ofloxacin [(η6-p-cymene)RuCl(O,O-oflo)]·2.8H2O has a “piano-stool” structure with quinolone acting 

as bidentate ligand coordinated to the metal through the ring carbonyl and one of the carboxylic 

oxygen atoms [175]. The complex interacts with DNA and provokes DNA shrinkage. It is moderately 

active against Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Plasmodium falciparum. 

4.4.3. Anticancer Activity 

The anticancer activity of fluoroquinolones has been explored in the last years [176–179] based on 

their ability to block topoisomerase II, thus inhibiting the DNA repair activity. It is not surprising that 

numerous studies concerning the biological activity of quinolone metal complexes include their ability 

to interact with DNA, as a premise for anticancer activity (see Table 4). 

Some complexes of lomefloxacin, [Co(LFX)(H2O)4]·Cl2 and [Zn(LFX)(H2O)4]·Cl2 were found to 

be very active against the breast cancer cell line MCF7 [82]. The anti-proliferative activities of the 

complex [Cu(mox)(H2O)2Cl]BF4 and of other congeneric complexes with mixed ligands were 

evaluated against four breast cancer cell lines (MCF-7, T47D, MDA-MB-231 and BT-20), along with 

the normal breast epithelial MCF-10A cell line, comparing to the parent drug, moxifloxacin. Both the 

parent ligand as well as its copper complex did not significantly inhibit the proliferation of  

non-tumorogenic MCF-10A breast epithelial cells. Moxifloxacin did not exhibit anti-proliferative 

effect against any of the breast cancer cell lines examined, instead, the Co(II) complexes showed 

differential anti-proliferative activity against the tested breast cancer cell lines [103]. 
The gold (III) complexes with general formula [AuCl2L]Cl (L = norfloxacin, levofloxacin, 

sparfloxacin) were tested against A20 (murine lymphoma), B16-F10 (murine melanoma) and K562 

(human myeloid leukemia) tumor cell lines comparing to the normal cell lines L919 (murine lung 
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fibroblasts) and MCR-5 (human lung fibroblasts). The free ligands did not showed significant activity 

in the tumor or normal cell lines, whereas the complexes are more active than the parent drugs, and 

they have with a similar cytotoxic activity [62].  

Recent research has focused on increasing the antitumor activity of polyoxometalates (POMs) by 

introduction of medicine molecules into the POM surface [180], and such molecules could be 

quinolone chelates. The first compound obtained by modifying the surface of a POM with a quinolone 

chelate was the complex {[Co(PPA)2]H2[SiW12O40]}·HPPA·3H2O. The inhibitory effect against  

MCF-7 cells lines showed that the complex and pipemidic acid have shown high antitumor activity to 

MCF-7, whereas the parent compound SiW12 exhibits no antitumor activity to MCF-7. Furthermore, 

the antitumor activity of complex was higher that that of its parent compounds, and this superiority 

could be explained from the synergism of POMs and Co-PPA [113]. Other complexes of pipemidic 

acid, [Cu(PPA)2]2·[PW12O40]·6H2O), [HPPA]5·[PW11CdO39]·2H2O, and [HPPA]3·[PW12O40]·2H2O showed 

a stronger antitumor activity than that of the parent anion against PC-3, Hela and HepG2 cells [114].  

It was found that antitumor activity depends on the binding mode of the polyoxoanion. Thus, the 

complex {[Ni(PPA)2]H4[SiW12O40]}·HPPA·3H2O, with a SiW12 polyoxoanion acting as a mono-

dentate inorganic ligand covalently linked to the nickel ions, showed no antitumor activity, whereas 

{[Zn(PPA)2]2H4[SiW12O40]}·3H2O, with a SiW12 polyoxoanion acting as a bi-dentate inorganic ligand 

covalently linked to the two zinc ions, exhibited higher antitumor activities than its parent compound 

against MCF-7 lines [115]. The type of polyoxoanion also affects the antitumor activity. This effect 

was observed for complexes [CuII(L1)2(H2O)2]H2[β-Mo8O26]·4H2O (1), [CuII
2(L

2)4][δ-Mo8O26]·4H2O 

(2), [CuII
2(L

3)2(H2O)2][β-Mo8O26] (3), [CuII
2(L

4)2(H2O)4][β-Mo8O26]·2H2O (4) (where L1 = enrofloxacin; 

L2 = pipemidic Acid; L3 = norfloxacin; L4 = enoxacin). The complexes 1, 3, and 4 exhibited a higher 

effect against SGC7901 lines comparing to the parent compound, while compound 2 showed no  

anti-SGC7901 activity [111].  

The organometallic ruthenium complexes chlorido(η6-p-cymene)(nalidixicato-κ2O,O)ruthenium(II) 

and chlorido(η6-p-cymene)(cinoxacinato-κ2O,O)ruthenium(II) were investigated as anticancer agents 

in human A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon 

carcinoma) cells by means of the colorimetric MTT assay and compared to the tumor-inhibiting 

properties of the respective ligands. Even though the compounds were shown to be mostly  

non-cytotoxic to the various cell lines, the complexes and all the ligands are inactive in the three  

cell lines [181]. 

4.5. Analytical Applications 

4.5.1. Determination of Quinolones Based on Complexation with Metal Ions 

The capacity to form complexes with different metal ions has been applied in the analysis of 

quinolones in pharmaceutical formulations or in biological samples through spectrophotometric, 

spectroflurimetric and atomic absorption spectrometric methods. Most of the spectrophotometric 

methods developed for analysis of quinolones are based on the formation of yellow or orange-yellow 

chelates with Fe3+ in acid medium. The structure of such a complex is depicted in Figure 16. 

Generally, these methods are simple, rapid, efficient and inexpensive. 
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Figure 16. Structure of a 1:2 (metal: ligand) chelate of norfloxacin with Fe3+. 
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Ciprofloxacin, ofloxacin and norfloxacin have been determined colorimetrically in tablets based on 

their amber coloured complex with Fe(III) that exhibited a maximum at 370 nm [182]. The complex 

with Fe3+ showing a maximum absorption of 435 nm allowed spectrophotometric determination of 

ciprofloxacin in tablets and in solution for infusion [183]. Based on the complexation with Fe3+, some 

flow injection (FI) spectrophotometric methods for determination of norfloxacin in drug formulations 

were developed. The coloured Fe(III) complexes absorb at 430 nm [184] or 440 nm [185]. Ofloxacin 

has been also determined by a flow-injection spectrophotometric method by measuring the absorbance 

of its complex with Fe3+ at 420 nm. The method was applied for analysis of ofloxacin in 

pharmaceuticals and human urine [186]. Ciprofloxacin formed with Fe(III) a brown-red complex 

whose absorbance was monitored at 447 nm, and the developed method was used for determination of 

ciprofloxacin in drug formulations [187]. A sequential injection spectrophotometric method was 

developed for analysis of ciprofloxacin and norfloxacin by measuring the absorbance of the 

corresponding complexes at 447 nm and 430 nm, respectively [188].  

Chelates with Fe(II) and Cu(II) with maximum absorptions placed below 400 nm were also applied 

in the spectrophotometric analysis of quinolones. Based on the yellow-coloured chelate with Fe(II) 

with absorbance at 358 nm, norfloxacin has been determined both in pure form and in tablet form [189]. 

Norfloxacin, ciprofloxacin and sparfloxacin have been determined in formulations and spiked 

biological fluids (plasma and urine) via their Cu(II) complexes [190].  

Coloured ion-association complexes were applied in developing the new visible spectrophotometric 

methods for determination of quinolones. Ciprofloxacin and norfloxacin have been determined in 

pharmaceutical tablets via formation of a ternary complex with eosin and palladium (II) which showed an 

absorption maximum at 545 nm [191]. Ofloxacin generates with Al(III) and erythrosin an ion-association 

complex between {AlIII(OFX)} cation and (ERY) anion. The ternary complex has an effective molar 

absorptivity at 555 nm, allowed spectrophotometrically determination of ofloxacin and other quinolone 

antibiotics (norfloxacin, enoxacin and levofloxacin) in pharmaceutical preparation [192]. Ion-association 

complexes formed with [Cr(NCS)4(NH3)2]
- (Reineckate anion) displaying a maximum absorption at 

524 nm were used for determination of ofloxacin [193] and norfloxacin [194]. 

A spectrophotometric method related to the interaction of quinolones with metal ions was 

developed based on the oxidation of quinolones with ammonium vanadate in sulphuric acid medium, 

followed by the development of a greenish blue colour measured at 766 nm, which has been attributed 
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to vanadium(IV). The method was applied for determination of amifloxacin, ciprofloxacin, difloxacin, 

enoxacin, enrofloxacin, lomefloxacin, levofloxacin, norfloxacin, ofloxacin and pefloxacin in 

pharmaceutical dosage forms [195]. 

Modification of the fluorescent properties of quinolones in the presence of different metal ions has 

attracted the interest for studying the interaction of quinolones with antacids [196] and for 

development of spectrofluorimetric methods, applied in determination of quinolones in bulk, in 

biological fluids and in pharmaceutical formulations. 

Determination of quinolones by spectrofluorimetric methods is based on: (i) the enhancement of 

quinolone fluorescence in the presence of metal ions (i.e., Al3+, Cu2+, Au3+ etc.); (ii) fluorescence 

sensitization of Tb3+ or Eu3+ in the presence of quinolone or (iii) quenching the fluorescence of a Tb3+ 

chelate after the addition of quinolone. 

Interaction of a series of quinolones (sparfloxacin, oxolinic acid, flumequine and enrofloxacin) with 

Al3+ was used to analyse them in pharmaceutical dosage forms or in biological fluids [197]. 

Norfloxacin has been also determined as its fluorescent complex with Al3+ in serum [198] and in 

pharmaceutical preparations [199].  

Formation of Y(III) fluorescent complexes underlying spectrofluorimetric methods for 

determination of norfloxacin in eye drops [200] and enrofloxacin in pharmaceutical formulations and 

its residue in milk [201]. 

The enhancement of luminescent properties of Tb(III) sorbates with ciprofloxacin and norfloxacin 

in zeolite was used for determination of these quinolones in biological fluids [202]. The enhancement 

effect of some quinolones on the fluorescence intensity of Tb(III)-sodium dodecylbenzenesulfonate 

system allowed the determination of enoxacin in pharmaceutical samples [203] and danofloxacin in 

milk [204]. Based on the sensitized fluorescence of Tb(III) enhanced by silver nanoparticles 

ciprofloxacin was dosed in pharmaceutical formulations [205], whereas pipemidic acid and 

lomefloxacin have been determined in pharmaceutical forms, urine and serum samples [206]. 

Europium (III)-sensitized fluorescence in the presence of quinolones was also applied for 

determination of quinolones ciprofloxacin, norfloxacin and gatifloxacin in pharmaceutical and serum 

samples [207] as for determination of ulifloxacin, the active metabolite of prulifloxacin in human 

serum and urine [208]. An optical sensor using Tb(III) and Eu(III) was constructed for analysis of 

norfloxacin and gatifloxacin in pharmaceutical and serum samples [209].  

Quencing the fluorescence of an Eu(III)-β-diketone complex in micellar solution after the addition of 

pefloxacin underlying a time-resolved fluorimetric method for determination of pefloxacin in serum [210]. 

Apart from the main analytical applications in determination of quinolones in pharmaceutical forms 

and in biological samples, the fluorescent complexes were used also for other purposes. In this regard, 

fluorescence studies of Au(III)-norfloxacin system were carried out in order to study the association of 

Au3+ ions with cationic, zwitterionic and anionic forms of the drug [211]. Cu(II)-ofloxacin interaction, 

studied by means of ofloxacin fluorescence quenching experiments in the presence of Cu(II), was 

evaluated for its environmental impact [212]. 

Forming the metal complexes was the basis of some indirect methods for analysis of quinolones 

using atomic absorption spectrometry (AAS). Flow injection-fast atomic absorption spectroscopy  

(FI-AAS) was applied for determination of norfloxacin based on the complexation reaction with 

Fe(III), via measuring the absorbance of Fe3+ [213]. The formation of ion associated in the presence of 
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cobalt sulphate was used for AAS determination of some fluoroquinolones in pharmaceutical dosage 

forms and biological fluids [195]. Ion-pair complexes formed with Reineckate anion allowed AAS 

determination of gatifloxacin, moxifloxacin and sparfloxacin in pharmaceutical formulations [214]. 

4.5.2. Determination of Metal Ions Based on Complexation with Quinolones 

Spectrophotometric and spectroflurimetric methods were developed for determination of metal ions 

based on their complexation with quinolones. Formation of a coloured chelate with norfloxacin, which 

exhibits an absorption maximum at 377 nm, was used for development of a spectophotometric method 

for determination of trace amounts of Fe(III) [215]. 

Norfloxacin was used as reagent for determination of neodymium, holmium and erbium in mixed 

rare earth through a derivative spectrophotometric method, based on the enhancement of absorption at 

575 nm for neodymium, 450 nm for holmium, and 523 for erbium, respectively [216]. 

The complex between europium(III) and gatifloxacin in a co-luminiscence system Eu3+-La3+-

gatifloxacin-sodium dodecylbenzene sulfonate was used for the determination of trace amounts of Eu3+ 

in rare earth samples [217]. Quencing fluorescence of a terbium chelates in the presence of Hg2+ was 

used for development of a highly sensitive and specific detection method of trace Hg2+ in trace Hg2+ in 

biological samples (urine) and environmental water [218].  

4.5.3. Quinolone Metal Complexes as Labels or Probes for Various Purposes 

The luminescent properties of Tb(III) and Eu(III) chelates of some quinolones (nalidixic  

acid, oxolinic acid, pipemidic acid, pefloxacin, norfloxacin, ofloxacin, ciprofloxacin and lomefloxacin) 

were characterized and the obtained reagents were proposed as labels for immunofluorimetric  

assay [219]. Based on the enhancement of the fluorescence intensity of the enoxacin-Tb3+ complex, an 

environmentally friendly probe for determination of DNA (both single-stranded and double-stranded) 

was developed [220]. 

5. Conclusions  

The metal ion - quinolone complexation represents a research field of increasing progress, having in 

view the consequences and applications of this process. Pharmaceutical profiles of quinolones can be 

improved by obtaining complexes with enhanced solubility. On the other side, pharmacokinetic 

interactions can occur at oral co-administration of quinolones and metal ions from mineral 

supplements and antacids. At the target site of their action, a quinolone-gyrase-DNA complex is 

formed in the presence of Mg2+ ions.  

Many metal ion—quinolone complexes obtained in the solid state have shown various biological 

effects: antimicrobial activity (sometimes equal or better than that of the parent quinolone), anticancer 

activity, and, in some cases, antifungal and antiparasitic activity. 

Complexation with metal ions was harnessed in the development of spectrophotometric, 

spectroflurimetric and atomic absorbtion spectrometric methods for the determination of quinolones in 

pharmaceutical preparations or in biological samples. Conversely, trace metal ions can be determined 

using quinolones as complexing agents. It must be noted that the progresses in the field of quinolone 
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complexes and their applications parallel the development of the newer fluoroquinolones with enlarged 

biological activity. 
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